import hashlib for i inrange(32,127): for j inrange(32,127): for k inrange(32,127): m=hashlib.md5() m.update('TASC'+chr(i)+'O3RJMV'+chr(j)+'WDJKX'+chr(k)+'ZM') des=m.hexdigest() if'e9032'in des and'da'in des and'911513'in des: print(des)
p = 9648423029010515676590551740010426534945737639235739800643989352039852507298491399561035009163427050370107570733633350911691280297777160200625281665378483 q = 11874843837980297032092405848653656852760910154543380907650040190704283358909208578251063047732443992230647903887510065547947313543299303261986053486569407 e = 65537 c = 83208298995174604174773590298203639360540024871256126892889661345742403314929861939100492666605647316646576486526217457006376842280869728581726746401583705899941768214138742259689334840735633553053887641847651173776251820293087212885670180367406807406765923638973161375817392737747832762751690104423869019034
s='TASC?O3RJMV?WDJKX?ZM' for i inrange(26): temp1=s.replace('?',chr(65+i),1) for j inrange(26): temp2=temp1.replace('?',chr(65+j),1) for k inrange(26): temp3=temp2.replace('?',chr(65+k),1) res=hashlib.md5(temp3.encode('utf8')).hexdigest().upper() if res[:4]=='E903': print(res)
for i inrange(21,127): temp1=flag.replace('?',chr(i),1) for j inrange(21,127): temp2=temp1.replace('?',chr(j),1) for k inrange(21,127): temp3=temp2.replace('?',chr(k),1) for l inrange(21,127): temp4=temp3.replace('?',chr(l),1) #print(temp4) res=hashlib.md5(temp4.encode('utf8')).hexdigest() #print(res) if(res==m): print(temp4) break
import gmpy2 import rsa e = 65537 n = 248254007851526241177721526698901802985832766176221609612258877371620580060433101538328030305219918697643619814200930679612109885533801335348445023751670478437073055544724280684733298051599167660303645183146161497485358633681492129668802402065797789905550489547645118787266601929429724133167768465309665906113 dp = 905074498052346904643025132879518330691925174573054004621877253318682675055421970943552016695528560364834446303196939207056642927148093290374440210503657 c = 140423670976252696807533673586209400575664282100684119784203527124521188996403826597436883766041879067494280957410201958935737360380801845453829293997433414188838725751796261702622028587211560353362847191060306578510511380965162133472698713063592621028959167072781482562673683090590521214218071160287665180751 for i inrange(1,e): if (dp*e-1)%i==0: if n%((dp*e-1)//i+1)==0: p=((dp*e-1)//i)+1 q=n//p phi=(p-1)*(q-1) d=gmpy2.invert(e,phi) m=pow(c,d,n) defn2s(num): t = hex(num)[2:] iflen(t) % 2 == 1: t = '0' + t return''.join([chr(int(b, 16)) for b in [t[i:i + 2] for i inrange(0, len(t), 2)]]) print(n2s(m))
from gmpy2 import * n=[n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,n14,n15,n16,n17,n18,n19] c=[c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19] for i inrange(len(n)): for j inrange(len(n)): if(i!=j): if(gcd(n[i],n[j])!=1): print(i,j) print("p=",gcd(n[i],n[j]))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
from gmpy2 import* n4 = 22822039733049388110936778173014765663663303811791283234361230649775805923902173438553927805407463106104699773994158375704033093471761387799852168337898526980521753614307899669015931387819927421875316304591521901592823814417756447695701045846773508629371397013053684553042185725059996791532391626429712416994990889693732805181947970071429309599614973772736556299404246424791660679253884940021728846906344198854779191951739719342908761330661910477119933428550774242910420952496929605686154799487839923424336353747442153571678064520763149793294360787821751703543288696726923909670396821551053048035619499706391118145067 c4 = 15406498580761780108625891878008526815145372096234083936681442225155097299264808624358826686906535594853622687379268969468433072388149786607395396424104318820879443743112358706546753935215756078345959375299650718555759698887852318017597503074317356745122514481807843745626429797861463012940172797612589031686718185390345389295851075279278516147076602270178540690147808314172798987497259330037810328523464851895621851859027823681655934104713689539848047163088666896473665500158179046196538210778897730209572708430067658411755959866033531700460551556380993982706171848970460224304996455600503982223448904878212849412357 p = mpz(132585806383798600305426957307612567604223562626764190211333136246643723811046149337852966828729052476725552361132437370521548707664977123165279305052971868012755509160408641100548744046621516877981864180076497524093201404558036301820216274968638825245150755772559259575544101918590311068466601618472464832499) q = n4//p phi = (p-1)*(q-1) e = 65537 d = invert(e,phi) m = pow(c4,d,n4) defn2s(num): t = hex(num)[2:] iflen(t) % 2 == 1: t = '0' + t return''.join([chr(int(b, 16)) for b in [t[i:i + 2] for i inrange(0, len(t), 2)]]) print(n2s(m))
flag{abdcbe5fd94e23b3de429223ab9c2fdf}
RSAROLL
思路:把数据进行解密(n、e、c) n分解:18443 * 49891
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
import gmpy2 n=920139713 e=19 p=18443 q=49891 phi=(p-1)*(q-1) d=gmpy2.invert(e,phi) s=[] withopen("data.txt","r") as f: for i in f.readlines(): i=i.strip('\n') s.append(chr(pow(int(i),d,n)))
print(s)
flag{13212je2ue28fy71w8u87y31r78eu1e2}
Dangerous RSA
思路:e=3 很容易联想到低加密指数攻击(e非常小(通常为3)) 思路:直接爆破或者低指数广播攻击
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
import gmpy2 import libnum n=0x52d483c27cd806550fbe0e37a61af2e7cf5e0efb723dfc81174c918a27627779b21fa3c851e9e94188eaee3d5cd6f752406a43fbecb53e80836ff1e185d3ccd7782ea846c2e91a7b0808986666e0bdadbfb7bdd65670a589a4d2478e9adcafe97c6ee23614bcb2ecc23580f4d2e3cc1ecfec25c50da4bc754dde6c8bfd8d1fc16956c74d8e9196046a01dc9f3024e11461c294f29d7421140732fedacac97b8fe50999117d27943c953f18c4ff4f8c258d839764078d4b6ef6e8591e0ff5563b31a39e6374d0d41c8c46921c25e5904a817ef8e39e5c9b71225a83269693e0b7e3218fc5e5a1e8412ba16e588b3d6ac536dce39fcdfce81eec79979ea6872793 c=0x10652cdfaa6b63f6d7bd1109da08181e500e5643f5b240a9024bfa84d5f2cac9310562978347bb232d63e7289283871efab83d84ff5a7b64a94a79d34cfbd4ef121723ba1f663e514f83f6f01492b4e13e1bb4296d96ea5a353d3bf2edd2f449c03c4a3e995237985a596908adc741f32365 i=0 defn2s(num): t = hex(num)[2:] iflen(t) % 2 == 1: t = '0' + t return''.join([chr(int(b, 16)) for b in [t[i:i + 2] for i inrange(0, len(t), 2)]]) while1: res=gmpy2.iroot(c+i*n,3) if(res[1]==True): print(n2s(res[0])) break i=i+1
import gmpy2 from Crypto.Util.number import * from binascii import a2b_hex,b2a_hex flag = "*****************" p = 262248800182277040650192055439906580479 q = 262854994239322828547925595487519915551 e = 65533 n = p*q
c = pow(int(b2a_hex(flag),16),e,n) print c # 27565231154623519221597938803435789010285480123476977081867877272451638645710
思路:基本都告诉了,上脚本吧
1 2 3 4 5 6 7 8 9 10
import binascii import gmpy2 p = 262248800182277040650192055439906580479 q = 262854994239322828547925595487519915551 e =65533 c=31154623519221597938803435789010285480123476977081867877272451638645710 n=p*q d=gmpy2.invert(e,n) m=pow(c,d,n) print(binascii.a2b_hex(str(hex(m))[2:]))
b’flag{B4by_Rs4}’
[HDCTF2019]bbbbbbrsa
enc信息
1 2 3
p = 177077389675257695042507998165006460849 n = 37421829509887796274897162249367329400988647145613325367337968063341372726061 c = ==gMzYDNzIjMxUTNyIzNzIjMyYTM4MDM0gTMwEjNzgTM2UTN4cjNwIjN2QzM5ADMwIDNyMTO4UzM2cTM5kDN2MTOyUTO5YDM0czM3MjM
from random import choice from Crypto.Util.number import isPrime, sieve_base as primes from flag import flag
defgetPrime(bits): whileTrue: n = 2 while n.bit_length() < bits: n *= choice(primes) if isPrime(n + 1): return n + 1
e = 0x10001 m = int.from_bytes(flag.encode(), 'big') p, q = [getPrime(2048) for _ inrange(2)] n = p * q c = pow(m, e, n)
# n = 32849718197337581823002243717057659218502519004386996660885100592872201948834155543125924395614928962750579667346279456710633774501407292473006312537723894221717638059058796679686953564471994009285384798450493756900459225040360430847240975678450171551048783818642467506711424027848778367427338647282428667393241157151675410661015044633282064056800913282016363415202171926089293431012379261585078566301060173689328363696699811123592090204578098276704877408688525618732848817623879899628629300385790344366046641825507767709276622692835393219811283244303899850483748651722336996164724553364097066493953127153066970594638491950199605713033004684970381605908909693802373826516622872100822213645899846325022476318425889580091613323747640467299866189070780620292627043349618839126919699862580579994887507733838561768581933029077488033326056066378869170169389819542928899483936705521710423905128732013121538495096959944889076705471928490092476616709838980562233255542325528398956185421193665359897664110835645928646616337700617883946369110702443135980068553511927115723157704586595844927607636003501038871748639417378062348085980873502535098755568810971926925447913858894180171498580131088992227637341857123607600275137768132347158657063692388249513 # c = 26308018356739853895382240109968894175166731283702927002165268998773708335216338997058314157717147131083296551313334042509806229853341488461087009955203854253313827608275460592785607739091992591431080342664081962030557042784864074533380701014585315663218783130162376176094773010478159362434331787279303302718098735574605469803801873109982473258207444342330633191849040553550708886593340770753064322410889048135425025715982196600650740987076486540674090923181664281515197679745907830107684777248532278645343716263686014941081417914622724906314960249945105011301731247324601620886782967217339340393853616450077105125391982689986178342417223392217085276465471102737594719932347242482670320801063191869471318313514407997326350065187904154229557706351355052446027159972546737213451422978211055778164578782156428466626894026103053360431281644645515155471301826844754338802352846095293421718249819728205538534652212984831283642472071669494851823123552827380737798609829706225744376667082534026874483482483127491533474306552210039386256062116345785870668331513725792053302188276682550672663353937781055621860101624242216671635824311412793495965628876036344731733142759495348248970313655381407241457118743532311394697763283681852908564387282605279108
import gmpy2 from Crypto.Util.number import * c = 26308018356739853895382240109968894175166731283702927002165268998773708335216338997058314157717147131083296551313334042509806229853341488461087009955203854253313827608275460592785607739091992591431080342664081962030557042784864074533380701014585315663218783130162376176094773010478159362434331787279303302718098735574605469803801873109982473258207444342330633191849040553550708886593340770753064322410889048135425025715982196600650740987076486540674090923181664281515197679745907830107684777248532278645343716263686014941081417914622724906314960249945105011301731247324601620886782967217339340393853616450077105125391982689986178342417223392217085276465471102737594719932347242482670320801063191869471318313514407997326350065187904154229557706351355052446027159972546737213451422978211055778164578782156428466626894026103053360431281644645515155471301826844754338802352846095293421718249819728205538534652212984831283642472071669494851823123552827380737798609829706225744376667082534026874483482483127491533474306552210039386256062116345785870668331513725792053302188276682550672663353937781055621860101624242216671635824311412793495965628876036344731733142759495348248970313655381407241457118743532311394697763283681852908564387282605279108 p = 178449493212694205742332078583256205058672290603652616240227340638730811945224947826121772642204629335108873832781921390308501763661154638696935732709724016546955977529088135995838497476350749621442719690722226913635772410880516639651363626821442456779009699333452616953193799328647446968707045304702547915799734431818800374360377292309248361548868909066895474518333089446581763425755389837072166970684877011663234978631869703859541876049132713490090720408351108387971577438951727337962368478059295446047962510687695047494480605473377173021467764495541590394732685140829152761532035790187269724703444386838656193674253139 q = 184084121540115307597161367011014142898823526027674354555037785878481711602257307508985022577801782788769786800015984410443717799994642236194840684557538917849420967360121509675348296203886340264385224150964642958965438801864306187503790100281099130863977710204660546799128755418521327290719635075221585824217487386227004673527292281536221958961760681032293340099395863194031788435142296085219594866635192464353365034089592414809332183882423461536123972873871477755949082223830049594561329457349537703926325152949582123419049073013144325689632055433283354999265193117288252918515308767016885678802217366700376654365502867 n = p*q phi=(p-1)*(q-1) e = 0x10001 d = gmpy2.invert(e,phi) flag=pow(c,d,n) print(long_to_bytes(flag))
import gmpy2 from Crypto.Util.number import * p = 9018588066434206377240277162476739271386240173088676526295315163990968347022922841299128274551482926490908399237153883494964743436193853978459947060210411 q = 7547005673877738257835729760037765213340036696350766324229143613179932145122130685778504062410137043635958208805698698169847293520149572605026492751740223 c = 50996206925961019415256003394743594106061473865032792073035954925875056079762626648452348856255575840166640519334862690063949316515750256545937498213476286637455803452890781264446030732369871044870359838568618176586206041055000297981733272816089806014400846392307742065559331874972274844992047849472203390350 n = p*q phi=(p-1)*(q-1) e = 65537 d = gmpy2.invert(e,phi) flag=pow(c,d,n) print(long_to_bytes(flag))
a="lovelovelovelovelovelovelovelove" b=[0x0A,0x03,0x17,0x02,0x56,0x01,0x15,0x11,0x0A,0x14,0x0E,0x0A,0x1E,0x30,0x0E,0x0A,0x1E,0x30,0x0E,0x0A,0x1E,0x30,0x14,0x0C,0x19,0x0D,0x1F,0x10,0x0E,0x06,0x03,0x18] flag="" for i inrange(len(a)): flag+=chr(ord(a[i])^b[i]) print(flag)
from z3 import * s = Solver() flag1 = Int('flag1') flag2 = Int('flag2') s.add(flag1 + flag2 == 2732509502629189160482346120094198557857912754) s.add(pow(flag1,3)+pow(flag2,3) ==5514544075236012543362261483183657422998274674127032311399076783844902086865451355210243586349132992563718009577051164928513093068525554) if s.check() == sat: print s.model() printhex(1590956290598033029862556611630426044507841845)[2:-1].decode('hex')+hex(1141553212031156130619789508463772513350070909)[2:-1].decode('hex')
另,sympy真好用~~
[NCTF2019]babyRSA
源码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
from Crypto.Util.number import * from flag import flag
defnextPrime(n): n += 2if n & 1else1 whilenot isPrime(n): n += 2 return n
p = getPrime(1024) q = nextPrime(p) n = p * q e = 0x10001 d = inverse(e, (p-1) * (q-1)) c = pow(bytes_to_long(flag.encode()), e, n)
# d = 19275778946037899718035455438175509175723911466127462154506916564101519923603308900331427601983476886255849200332374081996442976307058597390881168155862238533018621944733299208108185814179466844504468163200369996564265921022888670062554504758512453217434777820468049494313818291727050400752551716550403647148197148884408264686846693842118387217753516963449753809860354047619256787869400297858568139700396567519469825398575103885487624463424429913017729585620877168171603444111464692841379661112075123399343270610272287865200880398193573260848268633461983435015031227070217852728240847398084414687146397303110709214913 # c = 5382723168073828110696168558294206681757991149022777821127563301413483223874527233300721180839298617076705685041174247415826157096583055069337393987892262764211225227035880754417457056723909135525244957935906902665679777101130111392780237502928656225705262431431953003520093932924375902111280077255205118217436744112064069429678632923259898627997145803892753989255615273140300021040654505901442787810653626524305706316663169341797205752938755590056568986738227803487467274114398257187962140796551136220532809687606867385639367743705527511680719955380746377631156468689844150878381460560990755652899449340045313521804
e = 0x10001 d = 19275778946037899718035455438175509175723911466127462154506916564101519923603308900331427601983476886255849200332374081996442976307058597390881168155862238533018621944733299208108185814179466844504468163200369996564265921022888670062554504758512453217434777820468049494313818291727050400752551716550403647148197148884408264686846693842118387217753516963449753809860354047619256787869400297858568139700396567519469825398575103885487624463424429913017729585620877168171603444111464692841379661112075123399343270610272287865200880398193573260848268633461983435015031227070217852728240847398084414687146397303110709214913 c = 5382723168073828110696168558294206681757991149022777821127563301413483223874527233300721180839298617076705685041174247415826157096583055069337393987892262764211225227035880754417457056723909135525244957935906902665679777101130111392780237502928656225705262431431953003520093932924375902111280077255205118217436744112064069429678632923259898627997145803892753989255615273140300021040654505901442787810653626524305706316663169341797205752938755590056568986738227803487467274114398257187962140796551136220532809687606867385639367743705527511680719955380746377631156468689844150878381460560990755652899449340045313521804
import sympy.crypto import gmpy2
a=e*d-1 p=0 q=0 for k inrange(pow(2,15),pow(2,16)): if a%k==0: p=sympy.prevprime(gmpy2.iroot(a//k,2)[0]) q=sympy.nextprime(p) if (p-1)*(q-1)*k==a: break n=p*q print(n) m=pow(c,d,n) print(m) print(long_to_bytes(m))
c = 28767758880940662779934612526152562406674613203406706867456395986985664083182 n = 73069886771625642807435783661014062604264768481735145873508846925735521695159 e = 65537
思路:基本RSA , factor.com可以直接分解n
exp
1 2 3 4 5 6 7 8 9 10 11 12 13 14
from Crypto.Util.number import *
c = 28767758880940662779934612526152562406674613203406706867456395986985664083182 n = 73069886771625642807435783661014062604264768481735145873508846925735521695159 e = 65537 p=189239861511125143212536989589123569301 q=386123125371923651191219869811293586459
N = 331310324212000030020214312244232222400142410423413104441140203003243002104333214202031202212403400220031202142322434104143104244241214204444443323000244130122022422310201104411044030113302323014101331214303223312402430402404413033243132101010422240133122211400434023222214231402403403200012221023341333340042343122302113410210110221233241303024431330001303404020104442443120130000334110042432010203401440404010003442001223042211442001413004 c = 310020004234033304244200421414413320341301002123030311202340222410301423440312412440240244110200112141140201224032402232131204213012303204422003300004011434102141321223311243242010014140422411342304322201241112402132203101131221223004022003120002110230023341143201404311340311134230140231412201333333142402423134333211302102413111111424430032440123340034044314223400401224111323000242234420441240411021023100222003123214343030122032301042243
N = 302240000040421410144422133334143140011011044322223144412002220243001141141114123223331331304421113021231204322233120121444434210041232214144413244434424302311222143224402302432102242132244032010020113224011121043232143221203424243134044314022212024343100042342002432331144300214212414033414120004344211330224020301223033334324244031204240122301242232011303211220044222411134403012132420311110302442344021122101224411230002203344140143044114 c = 112200203404013430330214124004404423210041321043000303233141423344144222343401042200334033203124030011440014210112103234440312134032123400444344144233020130110134042102220302002413321102022414130443041144240310121020100310104334204234412411424420321211112232031121330310333414423433343322024400121200333330432223421433344122023012440013041401423202210124024431040013414313121123433424113113414422043330422002314144111134142044333404112240344
N = 332200324410041111434222123043121331442103233332422341041340412034230003314420311333101344231212130200312041044324431141033004333110021013020140020011222012300020041342040004002220210223122111314112124333211132230332124022423141214031303144444134403024420111423244424030030003340213032121303213343020401304243330001314023030121034113334404440421242240113103203013341231330004332040302440011324004130324034323430143102401440130242321424020323 c = 10013444120141130322433204124002242224332334011124210012440241402342100410331131441303242011002101323040403311120421304422222200324402244243322422444414043342130111111330022213203030324422101133032212042042243101434342203204121042113212104212423330331134311311114143200011240002111312122234340003403312040401043021433112031334324322123304112340014030132021432101130211241134422413442312013042141212003102211300321404043012124332013240431242
思路:txt给的数据有点不对劲,发现是5进制的数据,转一下进制,然后就是RSA广播攻击
1 2 3 4 5 6 7 8 9 10 11
N = 645571152526781668485594972550107069575255441127852655215134587752257907823674761543257833618924906619502017130555282685925055966163016480560608218713456781999964849490054138554971754017474595759742118662132957994442198564601721331028207376741563636829858586527045638336958913389271098445317748797982148583144 c = 112820376318708309511883266356668393396816131447182791445506209031700236878469506355658352414748854472099361508824474365112325602319862842561436679067358900089331778617100580343694334226208753320435002324108477884950933641216044198203776075918323272795752182687450526442079367110656868374931125538339145721573
N = 109269702205029292120022054633721536134438763741801805368759852020529400112797868566931991813909053016228871499067304592740926931055426540840268677218282537450757063806695831503892336975370479004151114020279110611956433492281834217463178735931660370487895538198474855043942908224106013915984721193047940206159 c = 45651293556966072304818630107703140982560165499022836594523320391474750266281527820821435052904791681898782443840766880327957385288649094238886877657228597671521358830021677304123300882210216797719566693160533018601632768048713030788957904378243453859832229603157052843135978639276611231634399594108602071349
N = 650924921034539366628943040335666300053344128720548929948773504346988568447254537130029347276930498912807651236193443235443419268444634453191995435549914833119001323314233615708933927657562263689125661997479199874874420611354737718422688024450888314035068200512748747969830525665558140563712363153927850709814 c = 7145575537980676074780210417817024536632595547590648616669010213946256431795860784357127920679439181517662499063976244238924613193503273987203026894830988537974932336129245277788828190575305229420617551083516420170192425247732269483299819348769856966536443995217830327641185916042049253075074223777360483322
import gmpy2 import time import sympy from functools import reduce from Crypto.Util.number import long_to_bytes defCRT(n,a): res=0 N = reduce(lambda x, y: x * y, n) for _n,_a inzip(n,a): m = N // _n res += _a * sympy.invert(m, _n) * m returnint( res % N)
import gmpy2 import time import sympy from functools import reduce from Crypto.Util.number import long_to_bytes p=0x928fb6aa9d813b6c3270131818a7c54edb18e3806942b88670106c1821e0326364194a8c49392849432b37632f0abe3f3c52e909b939c91c50e41a7b8cd00c67d6743b4f
n=p*q*r #n=85492663786275292159831603391083876175149354309327673008716627650718160585639723100793347534649628330416631255660901307533909900431413447524262332232659153047067908693481947121069070451562822417357656432171870951184673132554213690123308042697361969986360375060954702920656364144154145812838558365334172935931441424096270206140691814662318562696925767991937369782627908408239087358033165410020690152067715711112732252038588432896758405898709010342467882264362733 c=pow(flag,e,n) #e=0x1001 #c=75700883021669577739329316795450706204502635802310731477156998834710820770245219468703245302009998932067080383977560299708060476222089630209972629755965140317526034680452483360917378812244365884527186056341888615564335560765053550155758362271622330017433403027261127561225585912484777829588501213961110690451987625502701331485141639684356427316905122995759825241133872734362716041819819948645662803292418802204430874521342108413623635150475963121220095236776428 #so,what is the flag?
思路:yafu不能直接分解n,那么直接从源码得到p,q,由n出r,再出phi,然后就是老套路了
源码这里生成p,q,r都用了一个!,即阶乘,那么我们可以联想到解密可能要用到威尔逊定理:当且仅当p为素数时,(p-1)!≡ -1 ( mod p )
A=(((y%x)**5)%(x%y))**2019+y**316+(y+1)/x p=next_prime(z*x*y) q=next_prime(z) A = 2683349182678714524247469512793476009861014781004924905484127480308161377768192868061561886577048646432382128960881487463427414176114486885830693959404989743229103516924432512724195654425703453612710310587164417035878308390676612592848750287387318129424195208623440294647817367740878211949147526287091298307480502897462279102572556822231669438279317474828479089719046386411971105448723910594710418093977044179949800373224354729179833393219827789389078869290217569511230868967647963089430594258815146362187250855166897553056073744582946148472068334167445499314471518357535261186318756327890016183228412253724 n = 117930806043507374325982291823027285148807239117987369609583515353889814856088099671454394340816761242974462268435911765045576377767711593100416932019831889059333166946263184861287975722954992219766493089630810876984781113645362450398009234556085330943125568377741065242183073882558834603430862598066786475299918395341014877416901185392905676043795425126968745185649565106322336954427505104906770493155723995382318346714944184577894150229037758434597242564815299174950147754426950251419204917376517360505024549691723683358170823416757973059354784142601436519500811159036795034676360028928301979780528294114933347127 c = 41971850275428383625653350824107291609587853887037624239544762751558838294718672159979929266922528917912189124713273673948051464226519605803745171340724343705832198554680196798623263806617998072496026019940476324971696928551159371970207365741517064295956376809297272541800647747885170905737868568000101029143923792003486793278197051326716680212726111099439262589341050943913401067673851885114314709706016622157285023272496793595281054074260451116213815934843317894898883215362289599366101018081513215120728297131352439066930452281829446586562062242527329672575620261776042653626411730955819001674118193293313612128
#最初的payload from Crypto.Util.number import* from gmpy2 import * p=842868045681390934539739959201847552284980179958879667933078453950968566151662147267006293571765463137270594151138695778986165111380428806545593588078365331313084230014618714412959584843421586674162688321942889369912392031882620994944241987153078156389470370195514285850736541078623854327959382156753458569 q=139916095583110895133596833227506693679306709873174024876891023355860781981175916446323044732913066880786918629089023499311703408489151181886568535621008644997971982182426706592551291084007983387911006261442519635405457077292515085160744169867410973960652081452455371451222265819051559818441257438021073941183 e=65537 c=41971850275428383625653350824107291609587853887037624239544762751558838294718672159979929266922528917912189124713273673948051464226519605803745171340724343705832198554680196798623263806617998072496026019940476324971696928551159371970207365741517064295956376809297272541800647747885170905737868568000101029143923792003486793278197051326716680212726111099439262589341050943913401067673851885114314709706016622157285023272496793595281054074260451116213815934843317894898883215362289599366101018081513215120728297131352439066930452281829446586562062242527329672575620261776042653626411730955819001674118193293313612128 d=invert(e,(p-1)*(q-1)) print(long_to_bytes(pow(c,d,p*q)))
#爆破e from Crypto.Util.number import * from gmpy2 import *
n = 117930806043507374325982291823027285148807239117987369609583515353889814856088099671454394340816761242974462268435911765045576377767711593100416932019831889059333166946263184861287975722954992219766493089630810876984781113645362450398009234556085330943125568377741065242183073882558834603430862598066786475299918395341014877416901185392905676043795425126968745185649565106322336954427505104906770493155723995382318346714944184577894150229037758434597242564815299174950147754426950251419204917376517360505024549691723683358170823416757973059354784142601436519500811159036795034676360028928301979780528294114933347127 c = 41971850275428383625653350824107291609587853887037624239544762751558838294718672159979929266922528917912189124713273673948051464226519605803745171340724343705832198554680196798623263806617998072496026019940476324971696928551159371970207365741517064295956376809297272541800647747885170905737868568000101029143923792003486793278197051326716680212726111099439262589341050943913401067673851885114314709706016622157285023272496793595281054074260451116213815934843317894898883215362289599366101018081513215120728297131352439066930452281829446586562062242527329672575620261776042653626411730955819001674118193293313612128 p = 139916095583110895133596833227506693679306709873174024876891023355860781981175916446323044732913066880786918629089023499311703408489151181886568535621008644997971982182426706592551291084007983387911006261442519635405457077292515085160744169867410973960652081452455371451222265819051559818441257438021073941183 q = 842868045681390934539739959201847552284980179958879667933078453950968566151662147267006293571765463137270594151138695778986165111380428806545593588078365331313084230014618714412959584843421586674162688321942889369912392031882620994944241987153078156389470370195514285850736541078623854327959382156753458569 phi = (p-1)*(q-1)
e = 2 for e inrange(100000): if isPrime(e): try: d = invert(e,phi) flag = long_to_bytes(pow(c,d,n)) flag = str(flag) if"RoarCTF"in flag or"flag"in flag: print(e,'\n',flag) except ZeroDivisionError: continue